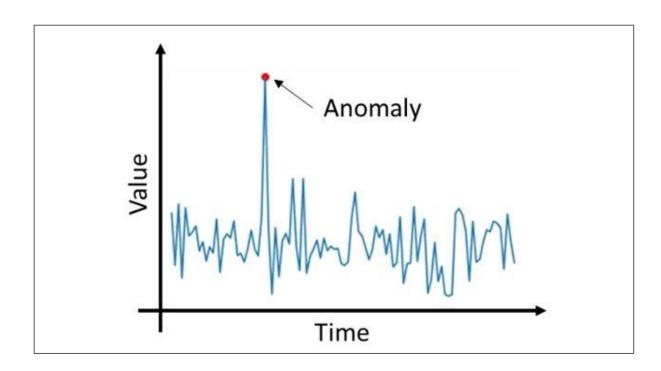
Using Machine Learning Algorithms to detect noise features in ground magnetic data

Exploring the effectiveness of machine learning predictive algorithms on classification tasks.



Rami Abou-Shamalah, MSc, Data Scientist

Contents

01 Background:

Problem overview & the Approach

02 Insights:

- 1) Exploratory Analysis
- 2) Model Performance

Recommendations & Limitations

01 Background:

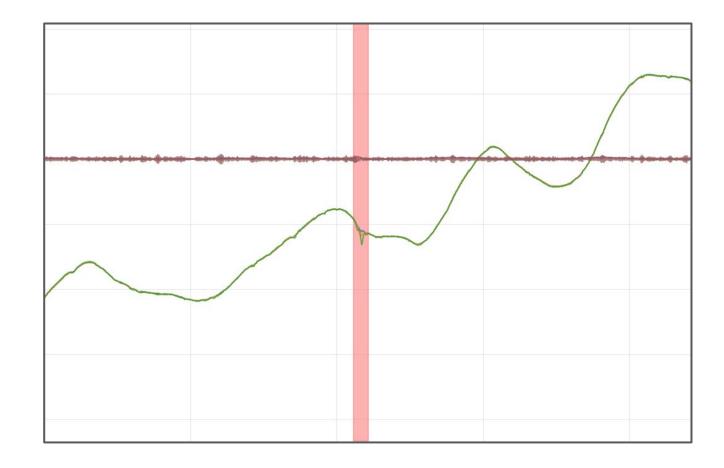
Problem & Approach

Background

- Identifying cultural artifacts has been done manually for decades

- Process of sifting through the time series data and look for sudden changes.

- Humans are prone to error



Approach

Solution

Implement a predictive model to detect cultural artifacts with higher degree accuracy than humans, such that the task can be automated.

How?

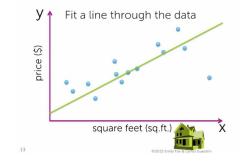
Sanders Geophysics has accumulated more than 5 decades worth of training data. For this particular project, there is 20 years worth of training data.

For the purpose of this project, as a concept of proof, only 2 projects, spanning 2 years, was used as training data.

Modelling Strategy:

Explicit algorithm doesn't work.

We're employing logistic regression, a basic but powerful statistical tool that excels at binary classification predictions - in our case, whether a time period is cultural or not.



Evaluation Method:

we'll use F1-Score, which balances two key metrics to account for errors:

- Type I Error (False Positive): Predicting a noise segment, when it does not exist
- Type II Error (False Negative): Predicting something, when it does not exist

- 1) Exploratory Analysis
- 2) Model Performance

Exploratory Data Analysis

What characteristics does the anomaly exhibit?

Data

2 Projects were used for the training data:

- Project #1 consisted of 657 files
- Project #2 consisted of 445 files

What is in the 'file'?

Acquired > Databases > Fetched from Database > Preprocessed

corrected_mag	raw mag	raw mag #2	time	label
0.7935	0.7935	0.77013	20758.636	0
0.79419	0.79419	0.77295	20758.727	0
0.79558	0.79558	0.77506	20758.818	0
0.79628	0.79628	0.77717	20758.909	0
0.79698	0.79698	0.77857	20759	0
0.79767	0.79767	0.77998	20759.091	0
0.79837	0.79837	0.78068	20759.182	0
0.79906	0.79906	0.78138	20759.273	0
0.79976	0.79976	0.78209	20759.364	0
0.80115	0.80115	0.78279	20759.455	0
0.80254	0.80254	0.78349	20759.545	0
0.80393	0.80393	0.7842	20759.636	0
0 00000	0 90002	0 7050	20750 727	0

- On Average 250 seconds for each file,
- At a frequency of 10 data points per second, each file on average is 2500 rows long
- Each file represents a portion of the time that the airplanes were online, so they've been properly edited.

Feature Engineering

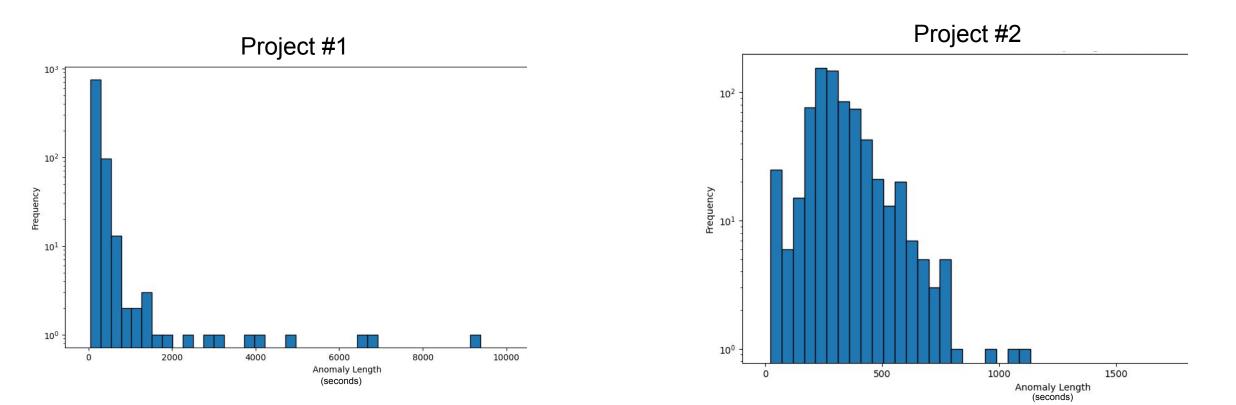
From: 'raw mag', 'raw mag #2': To: 'Rolling STD', '1st derivative', '2nd derivative', 'mag_difference', 'rolling_mean'

The anomaly

- Imbalanced dataset, the positive class, or 1 label only constitutes 5% of the positive class. Very typical for anomaly classification in time series data
- Length of the anomaly takes a somewhat left-skewed binomial distribution, but dependent on project

Exploratory Data Analysis

What characteristics does the anomaly exhibit?



Model Performance

How our models predicts anomalies

Model Performance:

• Based on a test sample of 20 datasets, our best results:

True Positives: 37 False Positives: 10 False Negatives: 0

Error Analysis:

• False Positives:

Falsely assuming an anomaly occurs when it does not

Occurred 10 times

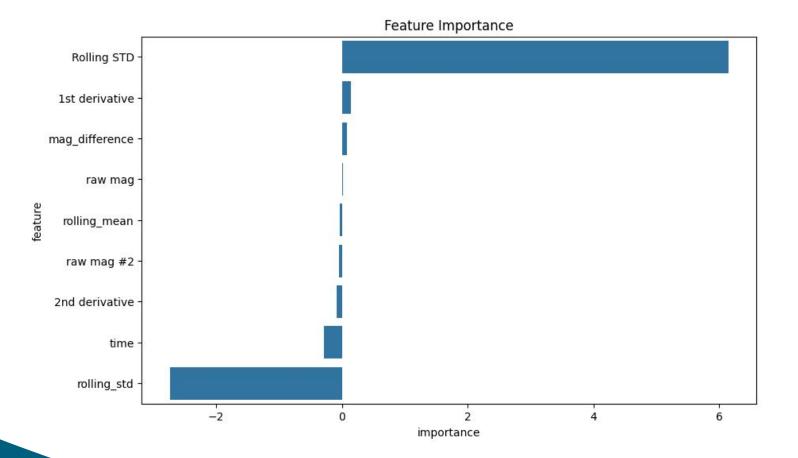
• False Negative:

Failing to pick up an anomaly.

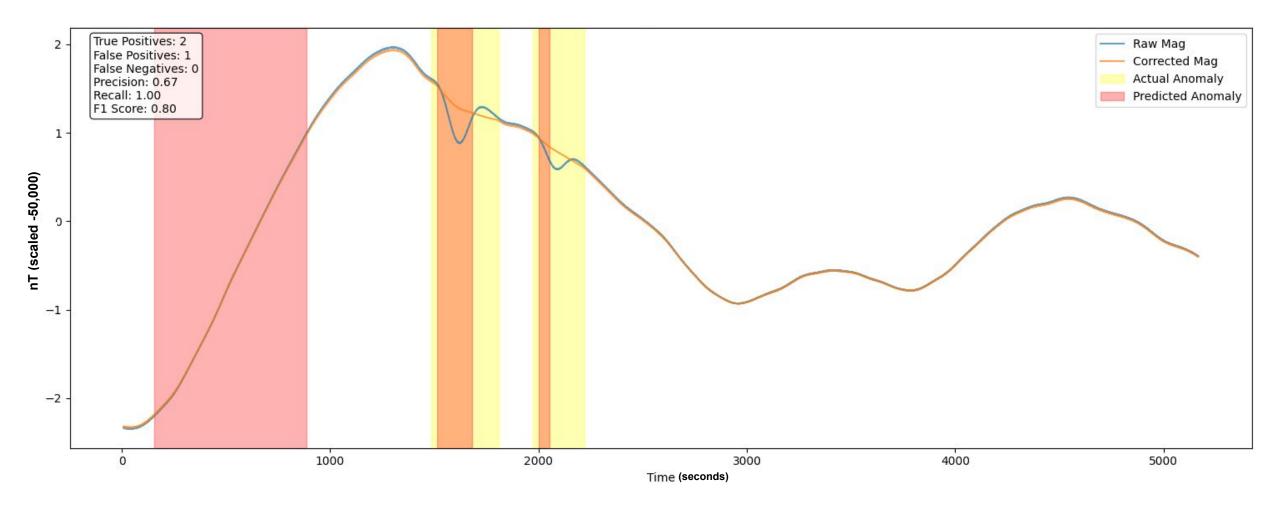
Did not occur.

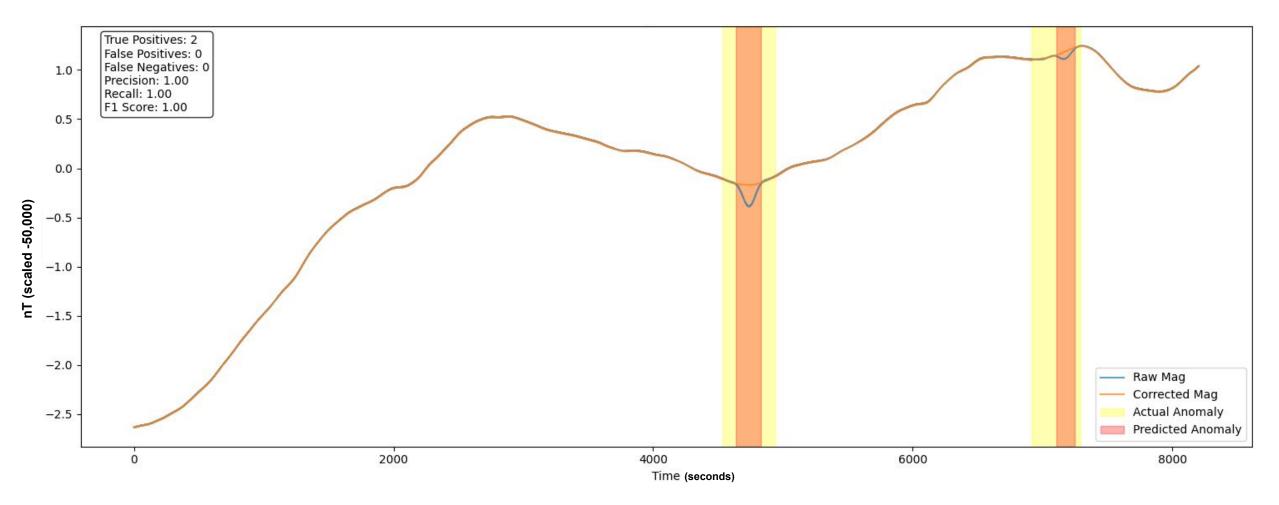
Model Performance

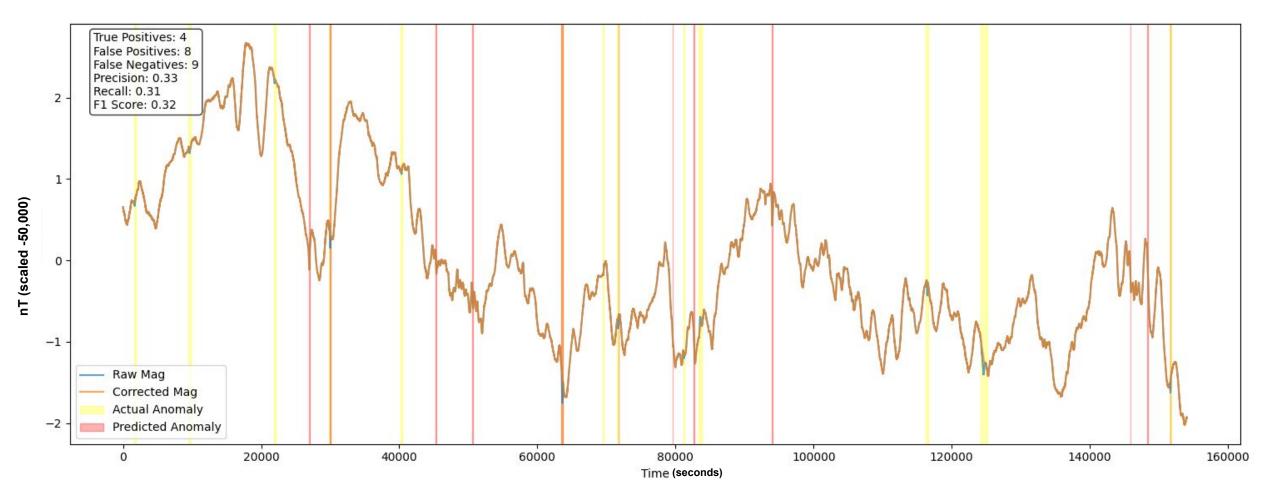
Model performance analysis

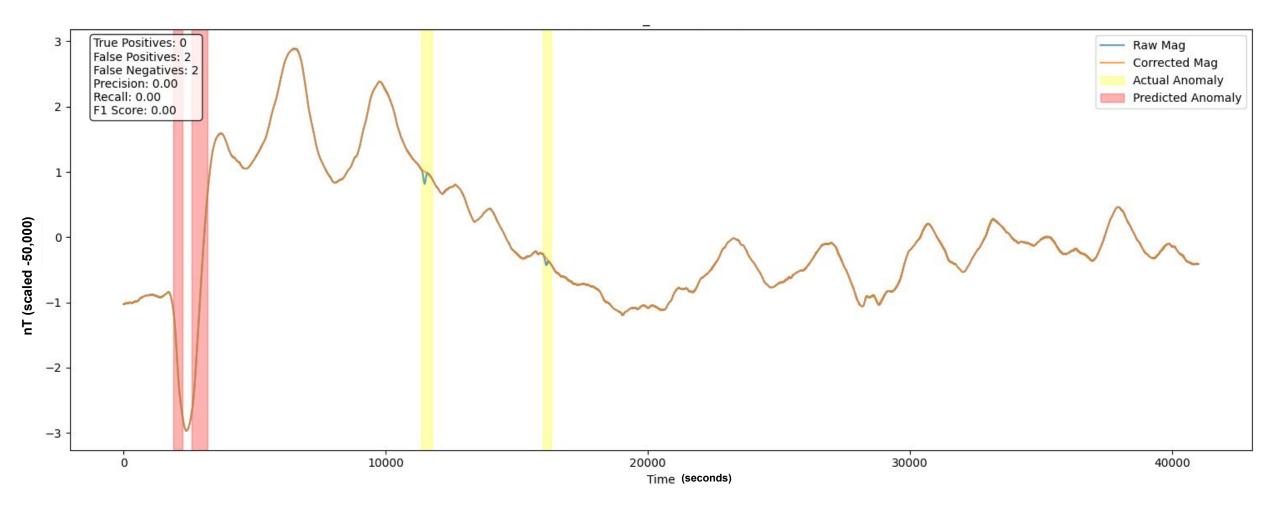


SGL









Recommendations & Limitations:

Recommendations & Limitations

More data!

The Culprit Revealed:

- Prediction rates increased when using the combined model versus a single model. The obvious conclusion is that, more data will yield better predictions
- per the feature importance graph: ML algorithm is more effective than an explicit algorithm which tries to account for all the nuances

The Impact:

• Automating tasks saves the company time and money by freeing human resources.

Strategic Recommendations:

- Try the program on 4 other more projects and analyze the predictions. If increasing accuracy, collect more data
- Once achieving 95%+ accuracy, we can incorporate the program into the processing stream and allow humans to act as supervisors of the model.
- Include data sets where we have two ground stations in different locations recording simultaneously. We do this now and it is very helpful to distinguish signal from noise.

